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Abstract The standard deviations and Shannon information entropies of the prob-
ability densities for a particle in a quantum corral are compared and contrasted to
determine their effectiveness in measuring particle (de)localization. We illustrate how
the two measures emphasize different aspects of the underlying distributions which can
lead to inconsistent interpretations. Among these, we show that the Shannon entropy is
able to distinguish between the presence of an attractive or repulsive effective potential
in the radial Schrödinger equation while the standard deviation does not. The analy-
sis of this radial model is then extended to momentum space where the dependence
of the measures, entropic sum and uncertainty product on the effective potential, is
examined.
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1 Introduction

The localization-delocalization of a particle in a quantum corral is an important and
relevant property in this system [1–3]. A delocalized quantum particle is one that is
spread throughout the system, while a localized one is concentrated at specific site(s).
The information of whether a particle is localized or delocalized lies in the specific
features of its probability density.

While localization-delocalization characteristics of the particle(s) in a quantum
system have become a fundamental part of current analysis, there are still some open
questions: How does one know whether the system is localized or delocalized? How
does one measure this (de)localization? In recent works, the standard deviation and
the Shannon entropy from information theory have been used to measure (de)local-
ization in quantum systems. Do these measures give the correct information about
the (de)localization features of the quantum system? do they give consistent results
or are there differences between them? is one better than the other in measuring the
(de)localization present in a quantum system? We also mention that other measures
have been employed to study localization in chemical systems [4].

Take for example the particle-in-a-box model. This system consists of a particle
bound to the interior of a box of unit length by infinitely hard walls. In this case, the
probability density for the mth eigen-state

ρbox,m(x) = 2 sin2(mπx), (1)

has m − 1 nodes , as shown in Fig. 1. Therefore, the probability density tends to a
uniform distribution for large quantum numbers. This is also reflected in the standard
deviation of the position,

�xbox,m = 1

2
√

3

√
1 − 6

π2m2 , (2)

which increases with m [5].
In contrast, the Shannon entropy of this model is the same for every eigen-state, [6]

with a value equal to:

Sbox = −(1 − ln 2) � −0.3069, (3)

and, therefore, does not give information about the localization of the particle in any
of the eigen-states of the system.
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Fig. 1 Particle-in-a-box densities for the m = 1, 2, 3, 4 states with box length unity
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1.1 Standard deviation

For many years the standard deviation has been used as a quantitative measurement
of (de)localization in quantum physics. From statistics, the standard deviation of the
position of a particle on the x axis is given by

�x = (〈x2〉 − 〈x〉2)
1
2 , (4)

where the moments are

〈x2〉 =
∫
ρ(x)x2dx, 〈x〉 =

∫
ρ(x)xdx, (5)

and the probability density ρ(x) is defined in terms of the wave function of the system,

ρ(x) = |�(x)|2. (6)

Smaller (larger) values of �x are associated with a more localized (delocalized) dis-
tribution.

1.2 Shannon entropy

On the other hand, one of the most useful tools from information theory is the Shannon
information entropy [7,8]. This informational entropy has been used in the studies of
different quantum systems, e.g., confined particles [6,9–11], atoms [12,13], molecules
[14] and quantum revival systems [15]. It is defined as

S = −
∫
ρ(x) ln ρ(x)dx . (7)

The Shannon entropy is a measure of (de)localization, where larger values are indic-
ative a more delocalized density and smaller values are associated with a localized
density.

As one can see, both the standard deviation and the Shannon entropy can be used as
(de)localization measures. One aspect that is important to point out is that the standard
deviation has a strong dependence on the shape and width of the underlying distribu-
tion. Thus, in recent years, there have been studies that discuss the inconvenience of
using the standard deviation in the analysis of quantum systems [16,17].

Perhaps one of the biggest drawbacks of the standard deviation comes from the
phase problem [18]. In contrast, a recent work has shown that the Shannon entropy
does not possess problems associated with the phase. For two degenerate states in a
cyclic box, which are phase-shifted, it was shown that the standard deviation yields
different results for each state while the Shannon entropy is the same for each state
[9]. Note that phase-shifting changes the nodal structure in the cyclic box while it does
not alter the relative magnitude of the peaks in the density.
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1.3 The model

At very low temperatures, quantum size effects dominate the behavior of electrons con-
fined to systems whose scales are comparable to a Fermi wavelength. These effects
have been observed experimentally in, for example, quantum wires or quantum wave-
guides, quantum dots and two-dimensional electron gases [1,2,19–24]. In these sys-
tems, the imposed reduced dimensionality in any given direction results in well defined
energy states that can be observed at temperatures T low enough so that the thermal
energy, kB T , is much smaller than the energy difference between respective energy
levels.

Quantum corrals are systems that have been experimentally realized on the surface
of very clean metals where the electrons are confined to a finite region by a barrier
of atoms of a different material, as studied by Crommie et al. [1,2]. The qualitative
behavior of the local density of states (LDOS) in the system could be described by
solutions to Schrödinger’s equation for a particle in a circular hard-wall enclosure [1].

We consider a particle confined to the interior of a circle of radius unity that is
centered at the origin. Using polar coordinates, r is the distance to the origin for any
point inside the unit circle, and φ its angle measured from a given direction. As is well
known, the eigen-functions are given by,

ψnk(r, φ) = Rnk(r)�k(φ), (8)

where

Rnk(r) =
√

2

J 2|k|+1(xnk)
Jk(xnkr), (9)

�k(φ) = 1√
2π

eikφ, (10)

and n = 1, 2, 3, . . . , |k| = 0, 1, 2, 3, . . . , Jk is a k-order Bessel function of the first
kind and xnk is the nth zero of this function. The energy of each of these states is
equal to

Enk = h̄x2
nk

2m
. (11)

The purpose of this article is to examine the (de)localization properties of a particle
in a quantum corral as an example of a two-dimensional confined quantum system.
Both the standard deviation and the Shannon entropy are calculated for each of its
eigen-states.

Shannon entropies are reported in units of nats while standard deviations are given
in dimensionless units since the radius of the confining region has been taken to be
equal to unity. The necessary integrals were calculated numerically.
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2 Results and Discussion

2.1 Radial Shannon entropy and standard deviation

In this section we focus on the behavior of the radial Shannon entropy and radial
standard deviation as a function of the quantum numbers. The radial density upon
integration over the angular variable yields,

ρr (r) = |Rnk(r)|2. (12)

This density leads to expressions for the radial Shannon entropy

Sr = −
∫
ρr (r) ln ρr (r)rdr (13)

and radial standard deviation

�r =
{∫

r2ρr (r)rdr −
[∫

rρr (r)rdr

]2
} 1

2

. (14)

Figure 2 compares Sr and�r as a function of quantum number n for selected values
of quantum number k. The behavior of Sr depends on the value of k. For k = 0−4, Sr

decreases (the density localizes) with n, while for k > 4, Sr increases (the density
delocalizes) up to a maximum before it begins to decrease. This behavior was also
observed for larger values of k.

Strikingly, the behavior of Sr is different to that of �r . First, the interpretation of
larger delocalization with n, (�r increases) in the standard deviation is opposi te to
the tendency of localization seen in the entropy (Sr decreases for k ≤ 4).

Second, the behavior of�r with n is consistent for all values of k, unlike the case
of Sr where the behavior for k ≤ 4 is different from that of k > 4. This increase
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Fig. 2 Radial standard deviation (left) and radial Shannon entropy (right) as functions of the principal
quantum number, n
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Fig. 3 Plots of the R2
nk density for states labeled as (n, k)

of �r with n in this model is consistent with that reported for it’s behavior in non-
relativistic and relativistic hydrogen-like atoms as a function of principal quantum
number [25,26]. Also, Sr increases with principal quantum number in spherically
averaged hydrogenic orbitals [12].

The behavior of the two measures with n can be ascertained by examination of the
underlying probability densities in Fig. 3. The densities for different quantum numbers
(n, k) have been plotted and can be analyzed as functions of n for different values of
k (rows) or as functions of k for different values of n (columns).

The standard deviation increases across rows (n) due to the presence of more nodal
structure, hence the interpretation is more delocalization. In the first two rows (k =
0, 1), one observes that not only do the number of peaks increase (nodal structure),
but the relative magnitudes among the peaks also increase (there is one which is dom-
inant in magnitude). This is detected by the Shannon entropy as locali zation and not
delocali zation as in the case of the standard deviation.

Why does the Shannon entropy first detect delocalization for k > 4? That is,
S(1,5)r < S(2,5)r , and S(1,7)r < S(2,7)r < S(3,7)r . It is because the first members, (1,5) and
(1,7), are already localized. See for example the differences between these and (1,0)
(1,1). There is a large region around the origin where the density is virtually zero in
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Fig. 4 Radial standard deviation (left) and radial Shannon entropy (right) as functions of the angular
quantum number, k

the (1,5) and (1,7) states. The presence of more nodal structure as one goes across
the third and fourth rows pushes the density inward towards the origin, resulting in
delocalization. There is a point where the introduction of nodal structure does not
‘push back’ the density towards the origin to a large extent, and as a consequence the
behavior of Sr is determined by the relative magnitudes of the peaks due to the nodal
structure as in k = 0, 1, i.e. localization.

We present in Fig. 4 curves of �r and Sr as functions of quantum number k for
different values of n. First, �r decreases with k for all values of n. Thus the inter-
pretation from the standard deviation is that the density localizes. We also mention
that this behavior is present for larger values of n which are not presented for brevity.
This localization of the density with k can be examined by focusing on the columns of
Fig. 3. The number of peaks and the nodal structure is the same throughout a particular
column so this cannot be the determining factor (as in the rows). However, one does
observe that density is removed from around the origin and pushed towards the bound-
ary, which results in localization. We also mention that this behavior is consistent with
that noted for the standard deviation as a function of azimuthal quantum number in
the non-relativistic hydrogen-like atom [25].

Once again, the behavior of Sr is different from that of �r . Sr first increases with
k before it begins to decrease. The positions of the maxima are also seen to increase
with n. The salient point here is that the behavior of both measures is consistent only
for large values of k. This behavior was also observed for larger values of n. Interest-
ingly, the behavior of Sr for small k is similar to that reported for �r of relativistic
hydrogen-like atoms as a function of small azimuthal quantum number [26].

Why does Sr first increase for smaller values of k? Figure 3 shows that the relative
magnitudes of the peaks in the density become smaller which leads to delocalization.
After this, the density is pushed into regions closer to the boundary, and this is the
determining factor of why the density localizes (Sr and�r both decrease). The Shan-
non entropy is able to capture subtle patterns in the density which are not apparent in
the standard deviation.
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2.2 Radial Schrödinger equation and effective potential

2.2.1 Position space

One may consider reducing the two-dimensional problem to a one-dimensional one
by formulating the problem in terms of a radial Schrödinger equation. Substituting the
wave function in Eq. (8) into the Schrödinger equation and operating yields,

− 1

r

d

dr

(
r

d Rnk

dr

)
+ k2

r2 Rnk = εRnk (15)

where ε = 2m E
h̄2 . One now defines a new variable

unk(r) = √
r Rnk(r). (16)

Substituting into Eq. (15) gives,

− d2unk

dr2 + k2 − 1/4

r2 unk = εunk . (17)

This equation can be interpreted as a one-dimensional radial Schrödinger equation
with effective potential given by

k2 − 1/4

r2 . (18)

Since the u’s are zero at r = 0 and r = 1, this model is equivalent to the particle-
in-a-box model discussed in the Introduction to this work, where the particle is now
under the influence of an effective potential that is attractive towards the center of the
confining region for k = 0, while it is repulsive for all other integer values of k. The
density for each eigen-state is equal to,

ρ1D(r) = |unk(r)|2 = r R2
nk(r), (19)

and the corresponding effective Shannon entropy for the radial direction is

S1D = −
∫
ρ1D(r) ln ρ1D(r)dr. (20)

Note that the the standard deviation is the same, while the expressions for Sr and
S1D are different. The difference is that there is a factor of r inside the logarithmic
argument in S1D while there is no such factor in Sr which leads to the relationship

Sr = S1D +
∫
ρ1D(r) ln rdr. (21)
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Fig. 5 S1D as a function of the principal, n, (left) and the angular, k, (right) quantum numbers. The inset
on the left contrasts the behavior of k = 0 (attractive potential) and k = 1 (repulsive potential)

The integral above may be defined as 〈ln r〉ρ1D . Thus, any difference between the
behaviors of Sr and S1D must be due to this term.

The behavior of S1D with n is given in Fig. 5. Notably, this behavior is now con-
sistent with that of the standard deviation. That is, all curves increase with n as the
density delocalizes. The one exception to this is k = 0 where there is localization
(curve decreases) instead of delocalization.

Why is there a difference in the behavior of S1D for k = 0 and k �= 0? The under-
lying densities are plotted in Fig. 6. For k �= 0, there is a repulsive potential (whose
intensity increases with k) which pushes the electron away from the origin towards the
boundary. Thus the first state, n = 1, already has a localized density. As n increases,
the density is pushed back toward the origin with the introduction of a nodal structure
which leads to delocalization.

For k = 0, there is an attractive potential which distributes the density (delocal-
izes) throughout the system in the n = 1 case, in a form more pronounced than in
the particle-in-a-box case. The introduction of nodal structure and the differences in
relative magnitudes of the peaks leads to localization. Most importantly, the behav-
ior of the S1D versus n curves distinguishes between the presence of an attractive or
repulsive effective potential. We emphasize that the standard deviation does not detect
this behavior.

Note that all curves tend towards an asymptotic limit with the curves for larger k
(stronger repulsive potential) approaching this limit more slowly. We verified numeri-
cally that this asymptotic limit corresponds to the value of the particle-in-a-box model
(≈ −0.3096). This is also consistent with the results for the standard deviation (Fig. 2).
That is, for large n, the asymptotic value is that of the particle-in-a-box (≈ 0.2887
when m → ∞).

This result may be understood in the following manner: This model has character-
istics of the particle-in-a-box model plus a potential. For smaller n, S1D and �r are
sensitive to the potential while for large n the nodal structure in the density dominates
their behaviors and their values revert to that of the particle-in-a-box (Compare the
densities in the last column of Fig. 6 with the densities in Fig. 1). The larger k curves
approach the limit more slowly since the potential still dominates the behavior of the
density for larger values of n.
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Fig. 6 Plots of the u2
nk density for states labeled as (n, k)

The dependence on the effective potential can be recovered from the standard devi-
ation by defining the difference, δ = �rnk −�xbox,m , with n = m. This yields δ < 0
for k > 0 which corresponds to a repulsive effective potential while δ > 0 for k = 0
is indicative of an attractive potential.

The curves of S1D versus k in Fig. 5 paint a consistent interpretation with the stan-
dard deviation. All curves decrease (localization) with k. The columns of Fig. 6 can
be used to interpret these results. For k = 0, there is an attractive potential which
distributes the density throughout the system. For k > 0 there is a repulsive potential
which pushes the density away from the origin towards the boundary resulting in
localization. Also, the strength of the repulsive potential grows with k which pushes
the density further towards the boundary. Thus there is greater localization for larger
k due to the larger repulsive potential.

2.2.2 Momentum space

In this section we will explore the behavior of the corresponding quantities in
momentum space. Momentum space wave functions were obtained by numerical
Dirac-Fourier transformation of the position space ones,
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Fig. 7 �p and Sp as functions of quantum numbers, n and k

t (p) = 1√
2π

∫
unk(r)e

−i pr dr. (22)

The momentum space Shannon entropy is defined in terms of the momentum density,
|t (p)|2, as

Sp = −
∞∫

−∞
|t (p)|2 ln |t (p)|2dp (23)

while the standard deviation in atomic units is

�p =
√

〈p2〉 − 〈p〉2 =
{

−
∫

unk(r)
d2

dr2 unk(r)dr +
[∫

unk(r)
d

dr
unk(r)dr

]2
} 1

2

. (24)

We verified numerically that 〈p〉 = 0 in this model, similar to the particle-in-a-box
model.

Figure 7 contrasts the behaviors of �p and Sp as functions of n and k. As a func-
tion of n,�p is linear while Sp is an increasing function of n. The observed linearity
of �p with n, and the behavior of Sp, is similar to the behaviors with m in the
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n 1 n 2 n 3 n 5

Fig. 8 Momentum densities as a function of p for selected states in the particle-in-a-box model (m) and
the radial model with effective potential (n). The colors in the lower curves correspond to blue (k = 0),
red (k = 1), green (k = 5), black (k = 7) (Color figure online)

particle-in-a-box model [27]. Notably, the behavior of Sp with n does not distinguish
between attractive or repulsive potentials, as in the case of S1D .

Momentum densities, along with those of the particle-in-a-box, are given in Fig. 8.
One can observe similar trends in the densities of both models for a particular value of
n(m). With increasing n, there is more nodal structure in the densities which results
in a transferral of density from around the origin, or small p, to regions of larger p.
The net result is delocalization which is observed from the increasing tendencies of
both �p and Sp.

The trends noted above as functions of n are also repeated as functions of k. That
is,�p displays a linear behavior while Sp is an increasing function of k. The attractive
potential (k = 0) has the most localized momentum space density as measured by
Sp. Elevating the intensity of the repulsive potential (larger k > 0) delocalizes the
momentum density. Note that the values for k = 0 are not included in the �p plot
since the integral corresponding to 〈p2〉 does not converge for these particular states.

These behaviors can be interpreted from the densities given in Fig. 8. Both attrac-
tive and repulsive potentials remove density from the smaller p regions and place it
at larger p, resulting in a delocalization of the momentum density as compared to the
particle-in-a-box. This is combined to a lesser extent with the addition of density in
the small p region close to the origin (for n > 1). Thus pulling the position density
towards the origin in position space as a result of an attractive potential, or pushing
the position density towards the barrier as a result of a repulsive potential, both result
in a transferral of momentum density towards larger p.

The interest in both S1D and Sp is warranted since they are components of an
entropic uncertainty relation [28]

St = S1D + Sp ≥ 1 + ln π ≈ 2.1447, (25)

which may be contrasted to the one in terms of standard deviations (in atomic units)
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Fig. 9 �r�p and St as functions of quantum numbers, n and k

�r�p ≥ 1

2
. (26)

The description of quantum fluctuations and quantum phase transitions in terms of
entropic uncertainty relations have been shown to be more suitable than variance
based ones [29–31].

The behavior of the entropy sum, St , and the uncertainty product,�r�p, are given
in Fig. 9 as functions of n and k. With n, both the sum and the product are increasing
functions, with the product exhibiting a linear behavior, analagous to the particle-in-
a-box model. However, the difference is that the product does not clearly distinguish
between different values of k while the sum does. This can be seen from the k depen-
dent curves where there is more dependence on k in the entropy sum than in the
product.

The entropy sum marks the difference between attractive (k = 0) and repulsive
(k > 0) potentials since there is a clear change in behavior. It increases as the strength
of the repulsive potential is increased. These results illustrate that the entropy sum
is more sensitive to the presence and strength of the potentials as compared to the
uncertainty product. We also remark that there is a crossover point in the k = 0 and
k = 1 curves of St . This crossover point, a result of the behavior in position space
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of S1D , illustrates and highlights the differences between the attractive (k = 0) and
repulsive (k = 1) effective potentials present in this system.

3 Conclusions

The particle in a quantum corral model is used to evaluate the standard deviation and
Shannon entropy as measures of the (de)localization inherent in the underlying proba-
bility densities. Comparisons are made by analyzing the behavior of the two measures
as functions of the two quantum numbers in the system. We show that this behav-
ior is markedly different for both quantum numbers which leads to inconsistencies
in interpretation. The standard deviation yields that the particle is more delocali zed
with increasing n, independent of the value of k. On the other hand, the Shannon
entropy gives that the particle is more locali zed with increasing n, and is a result
dependent on the value of k. For states with k > 4, the particle first delocalizes before
it localizes for larger n. The standard deviation illustrates that the particle locali zes
with increasing values of k which is consistent with the Shannon entropy, but only
for larger values of k. For smaller values, the interpretation of the Shannon entropy
is that the particle delocali zes from one state to another. Analysis of the underlying
distributions suggest that the standard deviation in this model is sensitive to the nodal
structure and width of the peaks while the Shannon entropy is also sensitive to the
relative magnitudes of the peaks in the distribution.

These measures are also used to examine the densities from the radial Schrödinger
equation which can be considered as a model of a particle-in-a-box under the influ-
ence of an effective potential. We show that the Shannon entropy is able to distinguish
between an attractive effective potential and a repulsive one as the density localizes
with n for k = 0 (attractive) while it delocalizes with n for k �= 0 (repulsive). Most
importantly, the standard deviation does not distinguish between the two cases. The
analysis is then extended to momentum space where we illustrate that the entropy
sum is more sensitive to the presence of the potentials as compared to the uncertainty
product.
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